Distribution of methanogenic and sulfate-reducing bacteria in near-shore marine sediments.
نویسندگان
چکیده
The distribution of methanogenic and sulfate-reducing bacteria was examined in sediments from three sites off the coast of eastern Connecticut and five sites in Long Island Sound. Both bacterial groups were detected at all sites. Three distributional patterns were observed: (i) four sites exhibited methanogenic and sulfate-reducing populations which were restricted to the upper 10 to 20 cm, with a predominance of sulfate reducers; (ii) three sites in western Long Island Sound exhibited a methanogenic population most abundant in sediments deeper than those occupied by sulfate reducers; (iii) at one site that was influenced by fresh groundwater, methanogens and sulfate reducers were numerous within the same depths; however, the number of sulfate reducers varied vertically and temporally with sulfate concentrations. It was concluded that the distributions of abundant methanogenic and sulfate-reducing bacteria were mutually exclusive. Methanogenic enrichments yielded all genera of methanogens except Methanosarcina, with the methanobacteria predominating.
منابع مشابه
Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments.
We examined temporal differences in sedimentary production of monomethylmercury (MMHg) at three sites in Long Island Sound (LIS). Sediment-phase concentrations of Hg species decreased from west to east in LIS surface sediments, following the trend of organic matter. However, Hg methylation potentials, measured by incubation with an isotopic tracer (200Hg), increased from west to east. 200Hg met...
متن کاملAnalysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.
The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by ...
متن کاملMetabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments.
The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane ...
متن کاملDistinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR-based 16S rRNA gene co...
متن کاملGenomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation.
Genomic markers for anaerobic microbial processes in marine sediments-sulfate reduction, methanogenesis, and anaerobic methane oxidation-reveal the structure of sulfate-reducing, methanogenic, and methane-oxidizing microbial communities (including uncultured members); they allow inferences about the evolution of these ancient microbial pathways; and they open genomic windows into extreme microb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 43 2 شماره
صفحات -
تاریخ انتشار 1982